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Abstract— In the autonomous driving area synthetic data is
crucial for cover specific traffic scenarios which autonomous
vehicle must handle. This data commonly introduces domain
gap between synthetic and real domains. In this paper we
deploy data augmentation to generate custom traffic scenarios
with VRUs in order to improve pedestrian recognition. We
provide a pipeline for augmentation of the Cityscapes dataset
with virtual pedestrians. In order to improve augmentation
realism of the pipeline we reveal a novel generative network
architecture for adversarial learning of the data-set lighting
conditions. We also evaluate our approach on the tasks of
semantic and instance segmentation.

I. INTRODUCTION

Transiting from the mere research area to application
domain autonomous driving must be able to handle broad
variety of traffic scenarios occurring in the real world. This
represents one of the main challenges in developing the
autonomous vehicles and theirs perception components. The
ability to master yet unseen situations will determine if such
a self-driving vehicle is able to navigate fully autonomously.

Nowadays neural networks have largely improved gener-
alization capabilities of perception systems of autonomous
vehicles. Their performance and generalization capacity is,
however, known to be very data reliant. This property highly
influences development and quality assurance of perception
algorithms. In order to ensure that a particular scenario will
be handled by a perception model such scenario should
be available in the training dataset beforehand. Engineers
constantly improve their models by capturing new scenarios
on the street and integrating them into the model via fine-
tuning. This approach involves annotation of any newly
captured scene every single time.

Although annotation procedure seems to be quite straight-
forward it is not always the case in the real world. La-
belling becomes a non-trivial task when it comes to ”long-
tail” scenarios which occur rarely and are hard to capture.
Another challenging task is to cover near-accident scenarios
which could not be replicated due to ethical reasons, e.g.
endangering vulnerable traffic users (VRUs).

For previously described examples synthetically generated
data seem to be very promising solution, as any rare or
near-accident scenario could be simulated. Many researchers
utilized the idea of simulated data in theirs works: [4] [5],
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Fig. 1: Example of augmented image together with semantic
and instance ground truths and original image after transla-
tion

[34], [25]. However appealing this approach might seem
at the first glance it hardly find its application in the real
world. The main reason for that is so called domain shift
introduced by simulation. Multiple works have shown that
the models trained merely on synthetic data show drastic
performance drop compared to the ones trained on real data
when evaluated also on real data. [28] reports almost 20%
meanIoU decrease for semantic segmentation model [23]
when it has been trained on CamVid(train) [6] and synthetic
dataset [28] but evaluated on CamVid(val). Simulated data
is typically different from real one with regard to content
distribution and appearance. This phenomenon is commonly
addressed as covariate shift and it is considered to be the
main reason for such performance drop [13].

In order to tackle the aforementioned problem many re-
searchers attempt to minimize the gap between synthetic and
real domains by means of generative networks. The majority
of them rely on adversarial training [16], [31], [37], which
is, however, a subject for covariate shift itself. Although
adversarial nets learn to deliver visually realistic data, such
models suffer from semantic mismatch and tend to integrate
visual artifacts into generated samples. Several examples of
the mentioned image perturbations are shown on the figure 2.
Thus, multiple works are focused on improving adversarial
networks by integrating certain constraints in order to level
introduced inconsistencies [19].

In this work we focus on pedestrian detection and pro-
vide an augmentation pipeline which allows to enhance
real dataset such as Cityscapes [11] with virtual pedes-
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Fig. 2: Examples of semantic inconsistencies introduced by
adversarial training.

trians in different scenarios. This pipeline makes geomet-
rically correct in-painting of the pedestrian CAD models
into Cityscapes scenes possible. Yet augmentation does not
consider lighting conditions of the particular dataset scene.
Hence, as a second contribution of our paper we provide a
domain adaptation model which is based on an adversarial
network and allows to learn appearance and make CAD
model realistic. Our adversarial network employes multiple
discriminators [22] such as used for multiple image resolu-
tions. But due to introduced masking approach our model
is robust to distribution discrepancies between the real and
synthetic datasets and it is able to produce consistent imagery
with realistic lighting conditions and appearance of the
original dataset. An example of an augmented and adapted
samples alongside with corresponding semantic and instance
segmentation ground truths are shown in the figure 1. We
claim that our approach allows to simulate various scenarios
with vulnerable road users without introducing simulation-to-
real gap. Our evaluation section demonstrates this in details.

II. RELATED WORK

Application of synthetic data in autonomous driving do-
main and beyond has already a comparably long history.

Recent research CAD models gained a lot of atention.
In order to accurately predict human 3D pose [30] used
synthetic training set of high variability to learn models
invariant to poses, view and other factors. [35] provided the
whole dataset based on realistic human augmentations called
SURREAL. Unlike 3D pose estimation [3] and [33] used 3D
models for multi-category 2D object detection.

Due to extreme complexity of the data and vast variety of
possible scenarios the idea of synthetic data generation was
extremely appealing in the domain of autonomous driving. It
has been utilizing virtual simulators, such as [7] and CARLA
[12]. Recently multiple works revealed synthetic datasets
completely consisting of rendered imagery. One of them is
SYNTHIA [29] which provided 9400 frames of scenes in
different lighting and weather conditions. Another dataset
[28] utilized video game engine to annotate 25000 images
and [14] simulated a clone of real KITTI dataset [15].

Some works simplified their task and picked rendering
single objects instead of rendering the whole image. So
[17] used simulated pedestrians to learn pedestrian detector
for a surveillance system. Another usage of virtual humans
has been revealed in [9] aiming at human pose estima-
tion. MixedPeds from [10] exploited the idea pedestrian
augmentation in the domain of autonomous driving. [20]
specialized on synthetic pedestrians in unexpected traffic
situations while enhancing real data and [2] has been using
car augmentation for car instance segmentation. Spatial and
semantic correctness for inserting objects into the image has
been approached by an end-to-end trainable network from
[24].

The aforementioned approaches produced very useful
training data, yet still distinguishable from actual real world
imagery. More sophisticated approaches tried to learn the
appearance and synthesize already target-alike imagery. Vast
majority of them are based on generative models and
leverage adversarial network architecture. So [1] introduced
augmentation network which synthesizes geometrically con-
sistent yet realistic in-paintings of cars. Other works focused
on generating the whole image to be target data alike.
For example, Pix2Pix in [26] introduced conditioning of an
adversarial training on the prior information about semantic
layout. Another conditioning strategy has been proposed in
[27], where they used predefined patches from database to
create image canvas. [36] has improved Conditional GANs
and integrated instance information together with image
manipulation possibility. [37] added cycle loss additionally
to adversarial one to achieve stable and consistent image
transfer results. Further works like [26], [32], based on the
tandem of cycle loss and adversarial loss tried to disentangle
appearance and content by learning the latent representation
space.

III. APPROACH

Our data generation pipeline consists of 2 parts - data
augmentation phase and appearance learning phase.

In the first phase we set virtual VRUs (vulnerable road
users) into the existing scene and blend the resulting render-
ing with the camera snapshot of the scene (actual frame).
This part focuses on geometrical and optical correctness of
the blending process. Virtual pedestrians are intended to be
allocated only to appropriate locations in the scene such
as sidewalks or roads. Placement of the 3D models also
requires avoiding collisions among them as well as with
objects already existing in the scene (cars, trees, poles, etc.)
To achieve optical correctness of the augmentation process
a rendering camera is calibrated with the parameters of the
dataset camera. This phase relies only on spatial information
about the scene and disregards any appearance characteristics
such as lighting conditions. The results of this phase are real
dataset frames with virtual pedestrians on it which are clearly
distinguishable by their synthetic optics.

In the second phase we aim to learn visual features
of the dataset scenes and apply them onto the in-painted
pedestrians so that they can attain a realistic look. This
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Fig. 3: Visualization of 3D model placement pipe-line with reconstructed spatial information about the scene: stereo point
cloud (black), estimated collision free spawn map (orange), and render of 3D model blended with the scene frame.

part is based on a dedicated adversarial network architecture
which is considered to be robust to distribution discrepancy
between synthetic and real domains. For our adversarial
architecture we adopt a generator network from [37] which
showed very stable and visually appealing results, and for
the discriminator part we deploy our multi-discriminator
architecture which will be described in the corresponding
subsection III-B.

A. Data Augmentation

1) Spawn Map: Dataset augmentation phase starts with
the estimation of a so called spawn map. The main goal
of this stage is to compute suitable spots where virtual
pedestrian could be located without the risk of a collision
with other objects which do already exist in the scene such
as buildings, vegetation or cars. In order to estimate spawn
map one relies on spatial information about the scene. This
information could be typically directly obtained either from
a LIDAR or a stereo camera. In our approach we leverage
spatial data reconstructed from disparity maps obtained from
stereo cameras from Cityscapes dataset.

Basing on the disparity maps and camera extrinsic and
intrinsic parameters we calculate corresponding depth map
for every particular image. An example for a point cloud
reconstructed from such depth map can be observed in
figure 3.

Utilizing simple threshold-based heuristic together with
isolation forest algorithm we estimate ground level and
eliminate outliers. Ground level including sidewalk and road
surface allows us to put pedestrians without the risk of being
located onto unsuitable spots such as buildings or walls.
Having the spawn map at our disposal we now can sample
any location to put a pedestrian semantically correct at said
location.

2) Collision Tracking: In addition, to that we aim to avoid
overlapping among virtual pedestrians as well as overlapping
with other dynamic objects in the scene. Any location in the
scene which is already taken is tracked using a collision map.
This builds some kind of a free space representation. Initially
any reconstructed stereo point is put into the collision map
if it does not belong to the spawn map. Any pedestrian
placed into the scene will extend the collision map in order
to prevent intersection with new meshes.

3) Blending: In the final step the layer with the 3D
pedestrian model will be rendered and blended with ex-
isting frame capture from dataset. This together with the
described pedestrian placement process involving point cloud
reconstruction, spawn map and collision map estimation and
located virtual pedestrians is visualized in figure 3. It is
necessary to notice here, that in order to achieve optical
correctness while blending, the rendering camera shall be
configured with the extrinsic and intrinsic parameters of the
original camera which has captured the frame.

B. Domain Adaptation

In the domain adaptation part of our pipeline, we intend
to learn appearance characteristics of the target dataset and
apply them to the augmented models. Here pedestrians
should gain a realistic look and realistic lighting.

1) Vanishing Pedestrians: Adaptation part is based on
the widely used adversarial training [16], which involves
2 neural networks acting against each other. The first one
is called generator and it gets samples from source data or
noise vectors to synthesize an image indistinguishable from
the target data. The second one, called discriminator, in turn
tries to tell apart synthesized and target images and penalize
generator. During the training it aims to find equilibrium in
a zero-sum game between networks and continues until in
ideal case discriminators prediction is equivalent to random
guessing.

When adversarial training converges it provides a set of
synthesized samples with distribution similar to the target
data. Although adversarial training is a powerful tool in
a domain adaptation task it commonly creates synthetic
mismatches between source and generated data. Whilst the
generator is encouraged to perform perturbations in the
source images, the discriminator identifies discrepancies be-
tween 2 domains very well and guides those perturbations
to level out the discrepancies.

Such behavior can be observed in multiple domain adap-
tation setups. Examples of adversarially introduced incon-
sistencies in synthetic to real domain adaptation are shown
in figure 2. In general this can heavily impact learning the
procedure with synthesized data as source ground truth does
not match corresponding images any more. In our specific
augmented-to-real adaptation setup the discriminator easily
detects foreign pedestrians and encourages the generator to
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Fig. 4: Multi-discriminator architecture with generator (Gen)
and 3 class specific discriminators (Dis).

render them away in order to restore initial distribution. This
has a rather undesired effect in our data generation pipeline,
since the in-painted objects as shown in figure 2 vanish.

2) Multi-Discriminator: In our approach we propose a
novel GAN model which is designed to handle distribution
discrepancies by splitting the discriminator into multiple
class-specific ones. The intuition behind this method is to
reduce the decision-making freedom of the discriminator to
overcome distribution discrepancy between source and target
datasets. We suggest eliminating the degree of freedom with
regard to content and let the discriminator only focus on the
appearance features of a particular classes.

For that matter we extend the number of discriminators but
at the same time we let each of them only assess one part
of the generated image which corresponds to a particular
semantic class. This could be achieved by splitting the
synthesized image into multiple disjoint patches, where every
patch contains one semantic class and providing only that
particular patch to a corresponding discriminator Dc

r. The
full view of the multi-discriminator architecture is depicted
in figure 4.

In this illustration one can see a generator Gr which is
provided with the image from our augmented dataset as
an input. The generator translates augmented images into
real ones and then its output will be split into multiple
patches using semantic maps. Each one is provided to a
dedicated discriminator Dc

r after that. Training such a multi-
discriminator Dr makes each split discriminator Dc

r get
specialized on the appearance features of one given class.
To obtain this we optimize a special aggregated objective.

Our aggregated objective Ladv provided for the particu-
lar multi-discriminator is composed from all class-specific
objectives:

Ladv(Gr, Dr) =

Nc∑
c

L(Dc
r, Gr) (1)

In 1, c represents a particular class and Nc is an overall
number of classes in a dataset. In our task of transferring
augmented images, the number of classes c = 2, so we
simplify the architecture to only 2 discriminators: one for the
pedestrian class and one for the rest. The simplified version
of objective 1 will be accordingly reduced to:

Ladv(Gr, Dr) = L(Dp
r , Gr) + L(Dr

r , Gr) (2)

3) Masking: For every class specific discriminator we
adopt the PatchGAN architecture from [21]. To ensure that
each of them is provided with only single-class patches of
the input image we mask out all pixels of irrelevant classes
by replacing them with 0 values. Masking only input images,
however, does not reduce propagation of the signal from the
whole image. Hence, we clip activations that originate from
undesired regions of the input image at each level of the
discriminator. As to achieve that we introduce a MaskLayer
and apply a down-sampled version of the original mask
Mc with c denoting a particular class on the feature maps
after each convolution layer of discriminator. More detailed
overview of a class-specific discriminator architecture is
shown in figure 5.

4) Cost-sensitive loss: Our adaptation pipeline consists of
pairs of input images xi of size 3×h×w together with cor-
responding labels yi from augmented dataset: {(xia, yia)}

Na
i=1

and pairs {(xjr, yjr)}
Nr
j=1 from real domain.

Random variable x take values xia in the input distribution
space X and yia in labels distribution spaces Y , which are
independent and identically distributed and follows joint
probability distribution Pa(x, y):

xia ∈ Xa ⊂ X ⊂ N3×h×w, i = 0, 1, ..., Na

yia ∈ Ya ⊂ Y ⊂ Nh×w, i = 0, 1, ..., Na

{xia, yia}
Na
i=1 ∼ Pa(x, y)

(3)

The real samples xjr in turn follow different probability
distribution Pr:

xjr ∈ Xr ⊂ X ⊂ N3×h×w, j = 0, 1, ..., Nr

yjr ∈ Yr ⊂ Y ⊂ Nh×w, j = 0, 1, ..., Nr

{xjr, yjr}
Nr
j=1 ∼ Pr(x, y)

(4)

In our class-specific discriminator we compute the error
values with regard to only relevant regions, so we apply
masks Mc to error calculation as well. Hence, class discrim-
inator objective looks as follows:

L(Dc
r, Gr) =

E(xr,yr)

[
1

wh
‖Dc

r(xr,M
c) ◦M c(yr)‖F 2

]
+

E(xa,ya)

[
1

wh
‖(Dc

r(Gr(xa),M
c)− J) ◦M c(ya)‖F 2

] (5)

Here, J denotes a ones matrix of size h × w and ‖·‖F 2

is a Frobenius norm. We intentionally keep masked MSE
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normalized by the size of the actual sample, since this leads
to the fact that masks of different size contribute differently
to the particular loss. We encourage our model to learn more
from samples with more prominent instances of class of
interest (e.g. pedestrian), which provides more information
about appearance.

A naive application of this objective function in the
adversarial training procedure naturally results in putting
more emphasis on the background that usually covers the
major part of an image (road, building, etc.). In the case
of augmented Cityscapes dataset, around 95% of pixels
represent non-pedestrians classes. This makes the problem
highly unbalanced where the non-pedestrians pixels would
contribute 19 times more intense to the overall objective.
Thus, we want to eliminate the effect of dominating classes
on the dataset scale as we deal with class unbalanced data.

This could be achieved by means of weighting factor λ as
a hyper-parameter. Our experiments show that it works best
if λ reflects actual class ratio in the dataset:

λ =

∑
y ‖Mp(y)‖1∑
y ‖Mr(y)‖1

(6)

Analogous calculation is applied in the case of multi-
discriminator with more than 2 classes of interest.
Thus, the overall cost-sensitive objective takes form:

L = λcycLcyc+

Ladv(D
p
r , Gr) + λLadv(D

r
r , Gr)+

Ladv(D
p
a, Ga) + λLadv(D

r
a, Ga)+

(7)

Here Lcyc represents the cyclic-consistency loss together
with its weight λcyc introduced by [37]. Now when the
objective is defined, we follow adversarial training procedure
to optimize:

min
Gr,Ga

max
Dp

r ,D
p
a,Dr

r ,D
r
a

L(Gr, Ga, D
p
r , D

p
a, D

r
r , D

r
a) (8)

IV. EXPERIMENTS

We base our experiments on the popular public dataset
Cityscapes [11]. It provides all the data necessary for the
data generation: camera frames and disparity maps alongside

Fig. 5: Overview of the class specific discriminator with its
MaskLayer introduced after each convolution block.

Method APavg AP50avg APperson AP50person

CS 31.8 59.0 33.0 67.7

Ours 32.6 60.4 35.6 74.2

TABLE I: Instance segmentation results for Mask-RCNN
trained on Cityscapes(top) and our dataset (bottom)

with calibration parameters to enable augmentation as well
as computer vision task ground truth to perform evaluation
on it.

A. Datasets

Dataset of our choice must meet several criteria: it must
provide information about spatial characteristic of the scene
which will be augmented, it also shall provide ground-
truth to preform computer vision task and evaluation with
generated data.

Cityscapes is a large-scale computer vision dataset which
provides 5000 camera snapshots of the size 2048 × 1024
pixels alongside with dense pixel segmentation labels. The
annotations provide ground-truth for both semantic and in-
stance segmentation. The dataset enfolds measurements in
cities across Germany (and Strasbourg) and during various
seasons as well as weather and daytime conditions. Images
are split into train, val and test sets with 2975, 500 and
1525 samples respectively. Together with fine annotations
the dataset provides 20,000 weakly annotated images, but the
latter ones are not used. Semantic maps contain information
about 30 classes such as road, sidewalk, person, car, etc. and
instance segmentation involve 8 categories: person, rider, car,
truck, bus, train, motorcycle, bicycle.

With the proposed augmentation pipeline we generate
augmented cityscapes dataset consisting of 2975 images
of resolution 2048 × 1024 where we randomly insert 1
5 virtual pedestrians. All images are accompanied with
generated both semantic and instance maps. We follow
standard Cityscapes annotation format regarding the classes
and categories.
On having generated augmented cityscapes we train multi-
discriminator GAN model, introduced in section III-B, for
200 epochs on it. The model was trained from scratch with
cyclic weight set to 10 and cost-sensitive λ = 0.2. Just like
in [37] we start with the learning rate of 0.0002 and keep it
constant for the first 100 epoch, decaying to 0 in the course
of another 100. For training we downscale images by a factor
of 2 and use no random crops.

For evaluation of the translated results we conduct several
experiments and assess our results both qualitatively and
quantitatively. Some examples of the augmentation and adap-
tation are shown in figure 6. In order to visualize the effects
introduced by our adaptation approach we show both aug-
mented and translated image together with manually picked
crops where those effects are characteristically prominent.
First, we want to draw attention to the fact that proposed
multi-discriminator architecture effectively helps to solve the
vanishing objects problem which came from discrepancy be-
tween distributions of augmented and original data. Provided

3309



Method Accuracy mean IoU person

CS 95.6 75.6 77.1

Ours 95.3 75.3 77.3

TABLE II: meanIoU values for semantic segmentation pre-
diction by Deeplabv3 trained on Cityscapes and our dataset.

samples reveal no semantic inconsistencies between synthetic
and translated samples and in-painted objects are kept in
place. Another characteristic of the translated images which
is worth accounting is the actual appearance of the rendered
objects. In the translated images rendered objects follow
the color scheme of the entire target dataset. Finally, the
feature which has been introduced in the transfered images
is lighting effects learned from the scenes. This could be
observed on the magnified segments, showing applied light
spots and smoothed edges.

In order to perform quantitative evaluation of the results
we asses our generated data on two computer vision tasks:
semantic and instance segmentation. For this purpose we
utilize the state-of-the-art computer vision algorithms such
as Deeplabv3 [8] and Mask-RCNN [18].

B. Instance Segmentation

We evaluate image transfer quality on the task of in-
stance segmentation reporting a standard COCO average
precision(AP) metric. We deploy one of the top performing
detection models called Mask-RCNN [18] which is pre-
trained on COCO dataset and fine-tuned on our augmented
cityscapes dataset and evaluate on 500 images of Cityscapes
val. We follow the experimental setup of the original work
[18] and report the results for instance segmentation in
table I.

C. Semantic Segmentation

Effectiveness of the generated data for semantic segmen-
tation task was assessed with Deeplabv3 model. Similar to
the preceding instance segmentation experiment we train
baseline method on both Cityscapes (train) and our generated
dataset and evaluate on Cityscapes (val). In both cases we
down-sample the images to 1024×512 pixel as a preprocess-
ing step. Deeplabv3 [8] uses xception65 backbone. It was
trained for 90K iteration with batch 16 on 513×512 random
crops. Learning rate in this case remains 0.007. For the best
performing snapshots meanIoU metric is reported in table II.
In both evaluation experiments our generated data shows the
similar performance with regard to overall metrics such as
meanIoU and APavg but reveals slight performance improv-
ing for our class of interest - pedestrian. Improvement for
APpedestrian in Mask-RCNN experiments is more than 2.5
percent. And improvement for Deeplab on pedestrian class
is rather moderate (less than 0.5), at the same time pixel
accuracy and meanIoU metric over all 19 classes shows
almost no performance decrease (0.3 percent).

Original Image Zoom Adaptation

Fig. 6: Examples of domain adaptation by multi-
discriminator architecture from augmented to Cityscapes

Instance segmentation Semantic segmentation

Fig. 7: Results by Mask-RCNN and Deeplabv3 trained on
our dataset.

V. CONCLUSION

In this paper we presented a pipeline for data generation
which consists of pedestrian augmentation part and dataset
appearance learning part based on novel class specific multi-
discriminator architecture. During experiments it was shown
that proposed pipeline can generate semantically and geo-
metrically consistent training images with target dataset optic
which helps to bridge domain gap between augmented and
real data.
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